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Motivation

I SWOT direct observations will include water surface
elevations, widths and slopes

I Discharge is very important for hydrology

I Direct estimation of discharge through Manning’s
equation can be difficult

I Models can predict discharge, but impeded by significant
errors

I Forcings (e.g. precipitation, boundary inflows)
I Model parameters (e.g. channel characteristics)

I Merging SWOT observations with modeling predictions
via data assimilation

I Developing and testing of SWOT assimilation framework
for discharge estimation
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Experimental design

I “Virtual” SWOT observations
I Synthetic data assimilation experiment



Models

I LISFLOOD-FP raster-based hydrodynamics model

I 1-D solver for channel flow

I 2-D flood spreading model for floodplain flow

I Kinematic, Diffusive and Inertial formulations

I Requires information on topography, river channel
characteristics and boundary inflows

I Assumption of
rectangular channel

I Has been
successfully applied
in a number of river
systems (mostly
smaller scale)



Data assimilation

I A number of assimilation techniques available

I Extended Kalman filter (EKF)
I Requires explicit modeling of model error covariance,

and tangent linear models

I Ensemble Kalman filter (EnKF)
I Requires ensemble of model states

I EKF is used, estimating the model error covariances using
the NMC method

I assumes error correlations are similar to correlations of
differences between successive forecasts

I Every SWOT pass is assimilated separately (filtering)
I Smoothing could be done by assimilating observations

for every orbit cycle



Study area

I ∼1000 km reach of the
Ohio River basin

I Drains an area of
∼220,000 km2

I Topography from National
Elevation Dataset (30 m)

I River topology from
HydroSHEDS

I Channel width and depth
from developed power-law
relationships

I Modeled main stem with
inflows from tributaries



Simulating SWOT observations

I Synthetic observations from the
SWOT instrument simulator

I Produces data with correct SNR,
geometric and noise characteristics

I Example interferograms and processing
chain



Open-loop simulations

I True water depth and differences of three open-loop
simulations from truth

True Q wnz wnz-Q

I Channel discharge for
one time step

I Inflow error dominates
simulated discharge

I Errors in channel
characteristics play a
less significant role



River discharge

I Errors in inflows as well as channel characteristics
I Ingesting SWOT observed WSE results in improved

discharge estimates
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Discharge errors

I Comparison of predicted discharge at study basin outlet

I Spatially averaged error along the river channel

I Assimilated discharge estimates are clearly better

I Issue with temporal persistence, related to inflow errors

Downstream discharge Discharge RMSE



Impact of different model errors

I Synthetic data assimilation framework allows exploring
impact of different model errors to discharge estimate

I Examples of assimilation with errors only in boundary
inflows, and channel characteristics

Q errors w-n-z errors



Sensitivity to coverage and observation
errors

I How much is the skill
decreased when compared
to observing the entire
domain in one pass?

I SWOT observations will
have uncertainty estimate
associated

I Impact of assumption
about observation error



Future research

I Explicitly model tributaries

I Massively parallel computing towards global applications

I Evaluate different assimilation techniques and error
covariance modeling approaches

I Assimilate additional SWOT observables (top width,
slopes)

I Evaluate information content of SWOT observations
I Estimate river channel bathymetry
I Calibrate hydrodynamic and hydrologic models


